History
The organic movement began in the early 1930s and early 1940s as a reaction to agriculture's growing reliance on synthetic fertilizers. Artificial fertilizers had been created during the 18th century, initially with superphosphates and then ammonia derived fertilizers mass-produced using the Haber-Bosch process developed during World War I. These early fertilizers were cheap, powerful, and easy to transport in bulk. Similar advances occurred in chemical pesticides in the 1940s, leading to the decade being referred to as the 'pesticide era'.
Sir Albert Howard is widely considered to be the father of organic farming.[5] Further work was done by J.I. Rodale in the United States, Lady Eve Balfour in the United Kingdom, and many others across the world.
As a percentage of total agricultural output, organic farming has remained tiny since its beginning. As environmental awareness and concern increased amongst the general population, the originally supply-driven movement became demand-driven. Premium prices from consumers and in some cases government subsidies attracted many farmers into converting. In the developing world, many farmers farm according to traditional methods which are comparable to organic farming but are not certified. In other cases, farmers in the developing world have converted for economic reasons [5]. As a proportion of total global agricultural output, organic output remains small, but it has been growing rapidly in many countries, notably in Europe.
Much before the awareness about the Organic farming through the movements began, there was a well developed Organic farming system in India. Ancient Indian texts describe the methods of Organic farming. This is being practiced even today in many of the villages in India. Sanjeevan system is an example of such organic farming method. [6]
Methods
"An organic farm, properly speaking, is not one that uses certain methods and substances and avoids others; it is a farm whose structure is formed in imitation of the structure of a natural system that has the integrity, the independence and the benign dependence of an organism"
—Wendell Berry, "The Gift of Good Land"
[edit] Soil management
Enhancing soil health is important for organic farmers,[7] but providing enough nutrients, particularly nitrogen, is often a challenge for organic farmers.[8] Plants primarily need nitrogen, phosphorus, and potassium. Crop rotation and green manure help to provide adequate nutrition. Intercropping, which is sometimes used for insect and disease control, can also increase soil nutrients. Cover cropping, application of compost, and mulching can also increase organic matter. Organic farmers can also use certain processed fertilizers such as seed meal and various mineral powders such as rock phosphate and
greensand, a naturally occurring form of potash which provides potassium. Altogether these methods help to control erosion, promote biodiversity, and enhance the health of the soil. In some cases pH may need to be amended. Natural pH amemdments include lime and sulfure, but in the U.S. some synthetically compounds such as iron sulfate, aluminum sulfate, magnesium sulfate, and soluble boron products are allowed in organic farming
[edit] Standards
Main article: Organic certification
Standards regulate production methods and in some cases final output for organic agriculture. Standards may be voluntary or legislated. As early as the 1970s organic producers could be voluntarily certified by private associations. In the 1980s, governments began to produce organic production guidelines. Beginning in the 1990s, a trend toward legislation of standards began, most notably with the 1991 EU-Eco-regulation developed for European Union[15], which set standards for 12 countries, and a 1993 UK program. The EU's program was followed by a Japan program in 2001, and in 2002 the United States created the National Organic Program (NOP).[16] As of 2007 over 60 countries have regulations on organic farming (IFOAM 2007:11). In 2005 IFOAM created the Principles of Organic Agriculture, an international guideline for certification criteria.[17] Typically the agencies do not certify individual farms, but rather accredit certification groups.
Materials used in organic production and foods are tested independently by the Organic Materials Review Institute.
[edit] Composting
Under USDA organic standards, manure must be subjected to proper thermophilic composting and allowed to reach a sterilizing temperature. If raw animal manure is used, 120 days must pass before the crop is harvested.[18]
[edit] Economics
The economics of organic farming, a subfield of agricultural economics, encompasses the entire process and effects of organic farming in terms of human society, including social costs, opportunity costs, unintended consequences, information asymmetries, and economies of scale. Although the scope of economics is broad, agricultural economics tends to focus on maximizing yields and efficiency at the farm level. Mainstream economics takes an anthropocentric approach to the value of the natural world: biodiversity, for example, is considered beneficial only to the extent that it is valued by people and increases profits. Some governments such as the European Union subsidize organic farming, in large part because these countries believe in the external benefits of reduced water use, reduced water contamination by pesticides and nutrients of organic farming, reduced soil erosion, reduced carbon emissions, increased biodiversity, and assorted other benefits.
Organic farming is labor and knowledge-intensive whereas conventional farming is capital-intensive, requiring more energy and manufactured inputs. Organic farmers in California have cited marketing as their greatest obstacle.[19]
[edit] Geographic producer distribution
The markets for organic products are strongest in North America and Europe, which as of 2001 are estimated to have $6 and $8 billion respectively of the $20 billion market (2003:6). However, as of 2007 organic farmland is distributed across the globe. Australasia has 39% of the total organic farmland with Australia's 11.8 million hectares, but 97 percent of this land is sprawling rangeland (2007:35), which results in total sales of approximately 5% of US sales (2003:7). Europe has 23 percent of total organic farmland (6.9 million hectares), followed by Latin America with 19 percent (5.8 million hectares). Asia has 9.5 percent while North America has 7.2 percent. Africa has a mere 3 percent. See also Organic farming by country.
Besides Australia, the countries with the most organic area are Argentina (3.1 million hectares), China (2.3 million hectares), and the United States (1.6 million hectares). Much of Argentina's organic farmland is pasture, like that of Australia (2007:42). Italy, Spain, Germany, Brazil, Uruguay, and the UK follow the United States by the amount of land managed organically (2007:26).
[edit] Growth
As of 2001, the estimated total market value of certified organic products was estimated to be $20 billion. By 2002 this was $23 billion and by 2007 more than $46 billion according to Organic Monitor (Willer/Kilcher 2009).
In recent years both Europe (2007: 7.8 million hectares/European Union: 7.2 million hectares) and North America (2007: 2.2 million hectares) have experienced strong growth in organic farmland. However, this growth has occurred under different conditions. While the European Union has shifted agricultural subsidies to organic farmers in recognition of its environmental benefits, the United States has taken a free market approach[20]. As a result, as of 2007 4 percent of the European Union's farmland was organically managed compared to just 0.6 percent of United States farmland (Willer/Kilcher 2009).
IFOAM's most recent edition of The World of Organic Agriculture: Statistics and Emerging Trends 2009 lists the countries which had the most hectares in 2007. The country with the most organic land is Australia with more than 12 million hectares, followed by Argentina, Brasil and the US. In total 32.2 million hectares were under organic management in 2007. For 1999 11 million hectares of organically managed land are reported (Willer/Kilcher 2009).
[edit] Productivity and profitability
A 2006 study suggests that converted organic farms have lower pre-harvest yields than their conventional counterparts in developed countries (92%) and that organic farms have higher pre-harvest yields than their low-intensity counterparts in developing countries (132%). The researcher attributes this to a relative lack of expensive fertilizers and pesticides in the developing world compared to the intensive, subsidy-driven farming of the developed world. Nonetheless, the researcher purposely avoids making the claim that organic methods routinely outperform green-revolution (conventional) methods.[21] This study incorporated a 1990 review of 205 crop comparisons which found that organic crops had 91% of conventional yields.[22] A major US survey published in 2001, analyzed results from 150 growing seasons for various crops and concluded that organic yields were 95-100% of conventional yields.[23]
Lotter (2003:10) reports that repeated studies have found that organic farms withstand severe weather conditions better than conventional farms, sometimes yielding 70-90% more than conventional farms during droughts. A 22-year farm trial study by Cornell University published in 2005 concluded that organic farming produces the same corn and soybean yields as conventional methods over the long-term averages, but consumed less energy and used zero pesticides. The results were attributed to lower yields in general but higher yields during drought years.[24] A study of 1,804 organic farms in Central American hit by Hurricane Mitch in 1998 found that the organic farms sustained the damage much better, retaining 20 to 40% more topsoil and smaller economic losses at highly significant levels than their neighbors.[25]
On the other hand, a prominent 21-year Swiss study found an average of 20% lower organic yields over conventional, along with 50% lower expenditure on fertilizer and energy, and 97% less pesticides.[26] A long-term study by U.S Department of Agriculture Agricultural Research Service (ARS) scientists concluded that, contrary to widespread belief, organic farming can build up soil organic matter better than conventional no-till farming, which suggests long-term yield benefits from organic farming. [27] An 18-year study of organic methods on nutrient-depleted soil concluded that conventional methods were superior for soil fertility and yield in a cold-temperate climate, arguing that much of the benefits from organic farming are derived from imported materials which could not be regarded as "self-sustaining".[28]
While organic farms have lower yields, organic methods require no synthetic fertilizer and pesticides. The decreased cost on those inputs, along with the premiums which consumers pay for organic produce, create higher profits for organic farmers. Organic farms have been consistently found to be as or more profitable than conventional farms with premiums included, but without premiums profitability is mixed (Lotter 2003:11). Welsh (1999) reports that organic farmers are more profitable in the drier states of the United States, likely due to their superior drought performance.[29]
In 2008 the UN Environmental Programme (UNEP) and UN Conference on Trade and Development (UNCTAD) issued a report which stated that "organic agriculture can be more conducive to food security in Africa than most conventional production systems, and that it is more likely to be sustainable in the long-term".[30] The report assessed 114 projects in 24 African countries, finding that "yields had more than doubled where organic, or near-organic practices had been used" and that soil fertility and drought resistance improved.[31]
In 2009, a review concluded that organic production was more profitable in Wisconsin, when including price premiums.[32]
No comments:
Post a Comment